THE INTERNET OF THINGS AND OTHER CHALLENGES TO THE INTERNET AS WE KNOW IT

Henning Schulzrinne
(+ Jan Janak & other CUCS IRT contributors)

ICC 2016
Key enablers

- IoT
- Cheap SOCs
- Cellular connectivity
- Mature Internet protocols
- Unlicensed
- Analytics ("big data")
- Applications
- Cloud-hosted applications & data
Natural evolution
Internet of Things

- Mostly about devices, not the Internet
- Network part not really new or exciting
- Software-controlled networked devices

Challenges:
- lack of UI → usability
- lack of UI → usable security
- integration (service & APIs)
- programming – beyond a single device
M2M/IoT/CPS is not…

- isn’t just about fancy thermostats and $199 door bells
- doesn’t always uses cellular networks
- is not always energy-constrained
- is not always cost-constrained
- doesn’t always use puny microcontrollers
- is not always run by large organizations
 - many small & mid-sized providers
 - usually embedded into other products
Where does IoT make sense?

• Automate manual data extraction
 • health, car, electric/gas meter, …

• Remote maintenance
 • vending machines, appliances, cars & trucks, trains, pumps, …

• Incorporate additional information
 • thermostats, light switches, traffic lights, parking meters, …

• Software-Defined Mechanics
 • locks, light switches

• But where does it solve more than 1st world problems?
 • commercial maintenance savings?
 • in-home customizable assistive technology
The killer app

with energy-harvesting
What’s different?

Privacy

Computation

Security

Applications

Network (protocols)

PHY & MAC

bandwidth constraints

standard interfaces

usable security

naming

5G vs. the rest
Lessons from Internet experience

• The Internet is about more than the Internet protocol
• Reliability multiplies, costs add
• Quality is no substitute for quantity
• Data links layers come & go, IP stays
• The age of application-specific {sensors, spectrum, OS, protocol …} is over
• Protocols matter, but programmability matters more
IoT = Internet at scale

- **Security** at scale
 - still largely “add password to configuration file”
 - identify by IP address
- **Management** at scale
 - device-focused
 - SNMP, at best
 - CLI, at worst
 - no performance diagnostics capabilities (“why is this so slow?”)
- **Naming** at scale
 - identify by node name
- **Programming** at scale
Lessons from early IoT (and cousins)

- **ATC**: proprietary network architecture

 "Ongoing problems continue to threaten NextGen's costs and timeline."

- **PTC**: 220 MHz dedicated network

 "[NTSB] has advocated for some form of positive train control for more than 45 years."

- **ITS**: 5.9 GHz

 allocated in 1999
Lesson: sensor networks may be (tiny) niche

- Most IoT systems will be near power since they’ll interact with energy-based systems (lights, motors, vehicles)
- Most IoT systems will not be running TinyOS (or similar)
- Protocol processing overhead is unlikely to matter
- Low message volume → cryptography overhead is unlikely to matter

In particular, according to the indexes, a Raspberry Pi is about seven times as fast as a baseline SPARCstation 20 model 61 — and has substantially more RAM and storage, too. And the Raspberry Pi 2 is sixteen times as fast at single-threaded tasks, and on tasks where all cores can be put to use it’s forty one times faster.

$35.00

- A 900MHz quad-core ARM Cortex-A7
- 1 GB RAM

http://eschatologist.net/blog/?p=266
The age of application-specific {sensors, spectrum, OS, protocol ...} is over

- *Computing system*: dedicated function \rightarrow OS
 - \rightarrow abstract into generic components
 - e.g., USB human interface device (HID)
- What are the equivalent sensor and actuator classes?
- *Networks*: generic app protocols
 - request/response \rightarrow HTTP
 - event notification \rightarrow SMTP, SIP, XMPP
- *Spectrum*: from new application $=$ new spectrum to generic data transport
NETWORKS – PHY, MAC, LAYER 3
Network challenges

• Unlicensed
 • How do I attach and authenticate a device to a (home) network?
 • Credentials?

• Licensed
 • Reliability → multiple simultaneous providers
 • Mobility → different providers in different regions
 • Charging → often low, intermittent usage, sometimes deferrable (“Whispernet”)
 • From $50/device/month → < $1/month?

• Authentication
 • Which devices can be used by whom and how?
 • “Any employee can monitor the room temperature in any public space, but only Facilities staff can change it”
IoT varies in communication needs

IoT

sensors

1/hour

1/minute

1/second

10/second

actuators

CPS

ICC 2016
Not just cellular or unlicensed
5G is not the only option

- indoor unmanaged
- indoor ext. managed
- outdoor urban
- outdoor rural
- outdoor remote
Niche networks

- Short range
- Low energy; mesh
- Ubiquity; low cost
- Speed; public APs
5G = low latency + mmW + ...
NETWORKS – APPLICATION PROTOCOLS
IoT islands vs. IoT eco system
Challenge: enabling discovery & access control

- Devices should be discoverable & re-usable
 - e.g., provide audio interface to bus display
 - environmental probes (temperature, noise, rain, …)
 - location (iBeacon) → 911
- Layers of functionality
 - anybody in vicinity can read
 - anyone in family can change
 - parents can re-program
- Allow delegation
 - grant temporary access to somebody or something else
 - by message or physical proximity
- Currently, all one-off solutions
 - OAuth? NFC?
Technology comes & goes, interfaces are forever

1904
1908
1947
1956
1978
1970s
fuel nozzle 1885?

1874
1974
1992
1993

INTERNET PROTOCOL
DARPA INTERNET PROGRAM
PROTOCOL SPECIFICATION
September 1981

1982
How should we name things?

- Network interface
- Device (independent of network)
- Domain name? → Portability? Phone number?
- IPv6
- EUI-64
- Device by function & location

"Ceiling lamp in kitchen" (used in programs)
Communication identifiers

<table>
<thead>
<tr>
<th>Property</th>
<th>URL owned</th>
<th>URL provider</th>
<th>E.164</th>
<th>Service-specific</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>alice@smith.name</td>
<td>alice@gmail.com</td>
<td>+1 202 555 1010</td>
<td>www.facebook.com/alice.example</td>
</tr>
<tr>
<td>Protocol-independent</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Multimedia</td>
<td>yes</td>
<td>yes</td>
<td>maybe (VRS)</td>
<td>maybe</td>
</tr>
<tr>
<td>Portable</td>
<td>yes</td>
<td>no</td>
<td>somewhat</td>
<td>no</td>
</tr>
<tr>
<td>Groups</td>
<td>yes</td>
<td>yes</td>
<td>bridge number</td>
<td>not generally</td>
</tr>
<tr>
<td>Trademark issues</td>
<td>yes</td>
<td>unlikely</td>
<td>unlikely</td>
<td>possible</td>
</tr>
<tr>
<td>Privacy</td>
<td>Depends on name chosen (pseudonym)</td>
<td>Depends on naming scheme</td>
<td>mostly</td>
<td>Depends on provider “real name” policy</td>
</tr>
</tbody>
</table>

→ IoT will likely be assigned local IP address space and owner-based names (meter17.pseg.com) [if any]
COMPUTATION & SERVICES
Protocols matter, but programmability matters more

- Nobody wants to program raw protocols
- Most significant network application creation advances:
 - 1983: socket API → abstract data stream or datagram
 - 1998: Java network API → mostly names, HTTP, threads
 - 1998: PHP → network input as script variables
 - 2005: Ruby on Rails → simplify common patterns
- Many fine protocols and frameworks failed the programmer hate test
 - e.g., JAIN for VoIP, SOAP for RPC
- Most IoT programmers will not be computer scientists
What is the best generic (simple) architecture?
Challenge: integrate embedded, mobile & virtual

magnetometer
accelerometer
location
gyroscope
LIFECYCLE
Windows XP, Corolla & Revolv

available 12/2001
end of sales 6/2008
end support 4/2009
end install 10/2010
end ext. support 4/2014

1996 Corolla - still can get parts

13 years

NEST’S HUB SHUTDOWN PROVES YOU’RE CRAZY TO BUY INTO THE INTERNET OF THINGS

founded 2012
acquired by Nest 2014
shut down May 2016

IF YOU WERE one of the people who shelled out $300 for Revolv’s smart home hub, you’ve probably already heard the bad news: the web service that powers the little gadget is shutting down next month, which will render the thing effectively useless.
Design for 20 years

Mobile Network Technology Lifecycles (North America)

© Chetan Sharma Consulting, 2014
IoT needs a life cycle model

- feature support
- EoL question
- security support
- safe mode
 - local only
 - guardian

- services
- company hands over control (bond or insurance model)
IoT needs an economic model

- Do you own or rent a device?
 - and do you know what rights you have (transfer, sale, …)?
 - and for how long?
- What is expected lifetime?
 - in what mode?
 - with what enhancements?
- Who pays for computation and storage?
 - printer & ink? stove & electricity?
 - subscription model → doesn’t scale except with aggregator
 - advertising model → creepiness-factor, no direct interaction
 - third party model: health or fire insurance, research (“your data for science”), electric utility
SECURITY
ShellShock for light switches

- IoT risks: privacy, DDOS, extortion (ransomware for your freezer), …
- Securely field updateable or no connection to Internet
 - still vulnerable if malware on home network
- Lifetime of devices > lifetime of company
- Insurance model:
 - source code escrow + maintenance for N years
- UL listing
Challenge: enrollment

• Commercial buildings → enroll 1,000s of devices at once
• Home → enroll one device at a time
 • current model: one app per device (class)
 • re-do if Wi-Fi password changes
 • common options:
 • QR code
 • P2P Wi-Fi (Wi-Fi Direct)
• possibilities
 • “hi, I’m a Philips light bulb – add me!” (PKI)
How should we secure things?

Old model

New model

“I want to join!”

WPA2

(P, E)

DIAMETER

device authorization database

create entries

commissioner

802.1x

Active Directory
PRIVACY
“Remember when, on the Internet, nobody knew who you were?”
IoT: more than programmable light bulbs

Public sensors & actuators

Semi-private

Private
Privacy fears deter usage

Major Concerns Related to Online Privacy and Security Risks, Percent of Households with Internet Users, 2015
Roughly half of consumers uncomfortable

Discomfort USING my data, average 48%

Discomfort IN public institutions 45%

Discomfort IN public marketplaces 45%

Discomfort IN public spaces 49%

Discomfort IN modes of transportation 50%

Discomfort IN private transportation 47%

Discomfort IN our homes 52%

Discomfort related to our bodies 58%

Discomfort SELLING my data: average 58%
Local processing for efficiency-privacy

fog computing model
Conclusion

• Design for simplicity and generality, not performance
• Design for surprises
• Design for developers – what do they need and want?
• Design for L2 evolution and co-existence